



Abstract—The growing number of elements in integrated
circuits increases the need to research and develop new design
methodologies. One of the promising technologies is the 3D
integrated circuits technique. In this paper, a thermal aware task
scheduling methods for processors in 3D integrated circuits are
discussed. Several task scheduling algorithms are discussed as
well as some possible ways to improve thermal aware scheduling
mechanisms. For thermal aware task scheduling, a master-slave
structured algorithm is presented.

Index Terms—3D IC, scheduler, Master-Slave, stack

I. INTRODUCTION

The relatively new 3D IC technology has promising future
[1]. It allows vertical stacking of several layers of cores and
has several advantages in compare with the traditional 2D IC
technology. Due to the vertical allocation of dies,
interconnects’ length could be much shorter then it would be
in the traditional one layer allocation. By minimizing the wire
length, it is possible to achieve signal edge sharpness and to
minimize the signal delays.

Traditionally there are three main options to solve issues
and minimize thermal dissipation problem. The first one is
based on thermal aware floorplanning. It assumes that during
floorplanning stage of design in 3D integrated circuit, the
thermal activity of blocks is counted and according to it, the
thermal aware floorplanning is performed. Blocks in this case
are placed so that the hot blocks are located far from each
other and, which in general, keeps the temperature of chip
relatively the same in the entire chip. Next approach is the
thermal aware placement. This operation is done during the
placement stage of circuit elements. The elements are placed
based on their switching activity. If an element is very active
it should be placed far from another active element. The third
method is based on an insertion of special thermal vias.
Thermal vias perform thermal energy removal from deep
layers of the chip to the upper layers. It is shown that thermal
via insertion is the most effective way to remove thermal

Gevorgyan Ara is with the Synopsys Armenia CJSC, 41 Arshakunyats

Avenue ViaSphere Technopark, 0026 Yerevan, Armenia (e-mail:
aragev@synopsys.com).

Baghdasaryan Aram is with the Synopsys Armenia CJSC, 41
Arshakunyats Avenue ViaSphere Technopark, 0026 Yerevan, Armenia (e-
mail: aramb@synopsys.com).

Avagyan Davit is with the Synopsys Armenia CJSC, 41 Arshakunyats
Avenue ViaSphere Technopark, 0026 Yerevan, Armenia (e-mail:
davita@synopsys.com).

Khazhakyan Tigran is with the Synopsys Armenia CJSC, 41 Arshakunyats
Avenue ViaSphere Technopark, 0026 Yerevan, Armenia (e-mail:
khtigran@synopsys.com).

Miljana Milić – University of Niš, Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail: miljana.milic@
elfak.ni.ac.rs).

energy. However, the disadvantage of this method is that
thermal vias are usually placed by arrays and occupy much of
the useful area of the chip. Another disadvantage of thermal
vias are parasitic effects that can happen; for example
parasitic capacitance and signal glitches.

All these three methods are hardware based methods. They
all assume changes in the physical design of the 3D chip.

In this paper, software approach to minimize thermal issues
in 3D integrated circuits will be discussed. This will be done
by thermal aware scheduling tasks for multiple processors. In
this way, modification of the current chip design can be
avoided, while focusing on operations performed by this chip.

II. PRIOR WORK

There are many works investigating thermal challenges and
their potential solutions in 3D IC. Black et al. [2] investigated
the thermal challenges for vertical stacking of SRAM and
DRAM on a processor. It was also suggested to implement
processor in two layers and, in that way to separate active and
passive logics to different layers. Another approach is to have
active and passive logics stacked one after another. Processors
are located in the active layer and the passive layer consists of
memory blocks like cache and SRAM. Such a design intends
to isolate thermally active layers by inserting passive memory
layers between them and thus implementing the thermal
energy buffer. Several possible arrangements for such mix-
stacked structures was suggested (Fig 1) [3].

This illustration shows that there are always active layers in
the same vertical stack for 8-core system. Like in 2D designs,
chips in 3D designs have better heat conductivity in vertical
direction. This assumes that hot layers have more thermal
impact on nearby vertical layers than on horizontal ones. The
classical thermal model for multilayered systems is show in
(Fig 2).

In this model, the active layers are described by their
temperature (T) and power (P). Temperatures of the first and
the second dies: T1 and T2 respectively can be calculated by
the equations (1-3):

 T1 = Rout1 (P1 + P2) (1)

 T2 = Rout1 (P1 + P2) + R21P2 (2)

 Tn=Tn-1+Rn,n-1Pn (3)

where T indicates the temperature of the core while P stands
for the power of the task.
 The thermal correlations of two adjusted layers are
discussed in [4]. It shows the impact of the hot core to all
other cores located in the same stack. The die layers that are
located further from the heat sink are usually hotter.

Thermal Aware Task Scheduling for 3D ICs
Ara Gevorgyan, Aram Baghdasaryan, Davit Avagyan, Tigran Khazhakyan, and Miljana Milić

Zbornik 57. konferencije ETRAN, Zlatibor, 3-6. juna 2013, str. EL3.7.1-5
Proceedings of 57th ETRAN Conference, Zlatibor, Serbia, June 3-6, 2013, pp. EL3.7.1-5

Fig. 1. 3D floorplan options.

Fig. 2. 3D thermal model.

III. SCHEDULING ALGORITHMS

In this section, several task scheduling algorithms will be
discussed, along with their advantages and disadvantages
from thermal awareness point of view.

In order to cool down the hot cores, a dynamic thermal
management (DTM) technique [5] is introduced. This
mechanism has a very fast response. When core temperature
rises above threshold, DTM core reduces power. The
application of this method can worsen the performances of the
circuit.

In the baseline scheduler, each core has its task queue,
which contains running tasks for this core. This scheduler uses
two lists; active and expired. Active list contains all running
tasks, and expired list contains tasks whose execution time is
expired. According to some criteria, core selects the running
task from this queue. When the execution time expires, the
task is moved to the expired list. When all tasks are placed in
the expired list, the scheduler exchanges tasks between the
expired list and the active list. The time duration while each
task is in the active list, depends on the task priority. Each
task is in the active list about 10-200ms of CPU cycle quota.
By default, the core switches tasks every 100ms. This
algorithm is very simple but it has a risk of putting two hot

tasks in the same core stack. Large delay between switching
tasks worsens the thermal condition in the chip.

Another schedule algorithm is Round-Robin (RR) [6].
Scheduler adds a new task at the end of the queue that
contains all tasks. When task execution time is expired
scheduler put this task at the end of queue. The scheduler
always selects task from the beginning of the queue. After N
iterations (N is the number of cores), each task has been
executed in the core for one interval. This mechanism helps
draining the high temperature from the cores. All other
methods are trying to balance temperature among all the
cores. Due to this, temperature in the core stacks rises or
decreased very rapidly, which cause thermal emergencies. For
avoiding thermal emergencies, the scheduler should balance
among core stacks [7].

Another mechanism to cool down the cores is
Temperature Balancing by Core [8]. This method arranges
tasks depending on the cores’ temperatures and tasks
consuming power. The Scheduler sorts all tasks by their
consuming power and cores by their temperatures. Then the
scheduler executes the lowest power-consuming task at the
hottest core. This algorithm repeats until all tasks are
accomplished. Such a way for distributing temperature is
better than the RRs. If one core in the stack is hot, then the
neighboring cores worm-up due to the vertical temperature
distribution between cores. In that way, temperature
differences between cores are kept small. The scheduler will
execute less power consuming tasks on the hotter cores. After
this, hotter core stacks will have larger temperature drop,
while colder core stacks will have a temperature rise that can
cause thermal emergencies. In this case, better solution for
reducing the temperature is the RR algorithm.

IV. THERMAL AWARE SCHEDULING

The scheduling algorithms that were discussed in the
previous section perform task scheduling based on task
priorities, position in active tasks queue, priority queue etc.
Neither of these algorithms takes into account power
consumption of tasks. This can lead to heat dissipation
problem in the stack and though the entire chip can become
useless. The proposed algorithm that will be discussed in this
section is the modified version of the priority queues based
algorithm, but it considers the values of the task's power
consumption also.

Cores that are located in the same stack have strong thermal
correlation and if one of the cores becomes too hot it can have
effect on the nearby cores too. In that way they will become
hot too and the scheduling will not be optimal for them. In
addition, it should be taken into consideration that layers that
are located near the heat sink are usually colder than the ones
that are located far from it.

Considering these two factors, a task scheduling algorithm
based on their power activity was developed. The power
activity of the task is done based on the performance counters

Pn

P1

T1

T2

R1_amb

Rn,n-1

Tn

 Layer 1

 Layer n

 Layer 2
R2,1

Tamb

P2

probing in processor [8]. It is assumed that each core is
equipped with such counters. Since the temperature of the
layer is dependant on the layer's location regarding the heat
sink, though the layers have special relative hotness values
(RH), which express their position depending heat. These
argument's values depend, not only on the layers location, but
also on nearby non-active layers, like SRAM or cache
memories.

Fig. 3. Master-Slave scheduler structure.

The scheduler has master-slave structure (Fig. 3). For each

stack, there is its own scheduler that performs direct task
assignment for the processor. This is a slave scheduler that is
driven by the master scheduler. The slave scheduler (Fig. 4)
performs task assignment to processors, taking into account
their actual temperature, task power consumption and
processors RH factor. The following algorithm does the task
selection and assignment procedure. At the first step, all
processors are placed in the thermal priority list based on the
RH factor of each one. After that, the tasks are placed in the
active tasks queue and are sorted by their power consumption
value in descending order, so that the most powerful task will
be placed in the first place. After the sorting procedure, the
task assignment begins. The first element of active tasks list is
assigned to the core with lowest value of RH. This will allow
having the most active task scheduled on the core that has
better cooling. The second task should be assigned to the
second core in cores list and so on. This procedure will
schedule all pending tasks on processors so that the colder the
processor is, the more powerful task is assigned to it. When
time quota for the task is expired then it is moved to the
expired task's list and again placed there in a sorted order.
This is done to ensure that task will be moved to active task
list next time in log(N) time.

The master scheduler (Fig. 5) is responsible for monitoring
the current temperatures of cores and performing according
resorting of cores in each task pool. In addition, master
scheduler assigns tasks to slave schedulers according to the
current state of the whole stack of processors. As it was
mentioned earlier, if a stack for one of the processors become

too hot, it has thermal correlation with nearby layers and due
to this, the nearby cores also can become hot. This can lead to
the situation when two hottest tasks are scheduled in the same
stack on nearby layers and as a result, the whole stack can
become too hot. To avoid such situation the master scheduler
analyzes the current temperatures of cores. If there is a core in
one of the stacks that is too hot, then even if there is a cold
core that can take a hot task, such scheduling is not allowed
and the task should be assigned to another core that is located
in another stack. The general structure of the master scheduler
is shown in Fig. 5. It consists of two main blocks, the first part
is performing re-sorting of processors pool and the second
part is responsible for thermal aware task assignment of core's
stacks.

Fig. 4. Slave scheduler structure.

Fig. 5. Master-Slave scheduler structure.

The slave scheduler performs task switching according to

the time quota or when the processor's temperature excides
threshold value. In this case, the current task's execution is
paused and it is moved to the expired queue. This task can

SS SS

Master Scheduler
Controller

Stack 1

Main
task
list

Stack N

MS

SS SS SS SS

min RH

max RH

Slave Scheduler Controller

Active
task's
list

Expired
task's list

Hottest task

Coollest task

Hottest task

Coollest task

later be rescheduled, on the same or some other processor. If
the temperature exceeds the threshold, software sends an
interrupt to the master scheduler controller, notifying it about
a hot processor stack, and sets a flag for that processor
indicating that it was paused due to temperature threshold. No
new tasks could be assigned to that core while this flag is set.
The master scheduler itself, gets the message sent by the slave
scheduler, analyzes the current state of that stack and
performs task assignment based on those results. If there is a
hot layer it means that nearby layers can become hot very
soon, what further indicates that the master scheduler should
rearrange the tasks sequence to avoid overheating of the stack.
When a new sequence of tasks is calculated, the master
scheduler assigns tasks to the slave scheduler and unsets the
temperature flag for hot processor. After that, the slave
scheduler takes the coldest task and assigns it to the hot
processor. This procedure is referred to as a Dynamic Task
Assignment.

There is a possible situation when the tasks cannot be
rescheduled and there is no task that is cold enough to be
scheduled on the hot processor. In such situations the master
scheduler keeps the current value of flag until the appropriate
task arrives to the main tasks list. While this is happening, it is
possible that the hot processor cools down and the
temperature value stabilizes in an acceptable range. In this
case, the slave scheduler gets an interrupt about that event,
analyzes it, unsets the flag and sends notification to master
schedulers. After getting this notification, the master
scheduler includes those processors in its active processor's
list and the new tasks can be calculated and scheduled for that
processor.

V. EXPERIMENTAL RESULTS

As an experimental platform a Linux based system was
chosen. To simulate the schedulers work and the task
assignment special, software was developed. It consists of
several modules. The first module simulates the 3D IC,
particularly the cores, their RH parameters, temperature
threshold values and the passive layers between processors.
This module provides a setup and feedback interfaces for the
next scheduler module. The second module is designed to
simulate schedulers’ behavior. It is independent from the
scheduler behavior and allows using multiple scheduler
models from the standard kernel. This module is responsible
for the task scheduling based on the model. In our case, this
model consists of two parts: master and slave schedulers. The
master scheduler has an interface to get a tasks list form the
third module. The third module is responsible for the task list
generation. It can generate tasks in two modes: entirely
random or with predefined values. The tasks are expressed by
their power consumption and by their total running time. The
discussed materials and algorithms were implemented using
C/C++ programming languages. As a hardware platform, the
Intel I5 Core 2.4GHz CPU was used with 4GB of memory.
The chosen operating system was Ubuntu OS. To ensure the
portability with other Linux systems no third party libraries

were used. The application itself is a command line
application and could be run from the bash environment. The
descriptions of processors and tasks are located in files and
are forwarded to the application as command line arguments.

As could be seen from Fig. 6, several comparisons were
performed. Different schedulers model were tested. The
Master-Slave algorithm shows performance of the same rank
compared to the others. The algorithms for task scheduling of
the slave scheduler, work in log(N). Together with the master
scheduler the total running time for this algorithm is
K*Nlog(N), where K is the number of stacks. Such running
time result is optimal for this class of algorithms.

Fig. 6. Experimental results.

VI. CONCLUSION

In this paper, the problem of thermal dissipation in 3D
integrated circuits was discussed. To solve this problem,
possible hardware and software approaches were suggested.
Since the hardware solutions have influence on the physical
design, for keeping temperature of 3D IC in allowable
boundaries, a software solution was suggested. The proposed
task scheduler algorithms have a master-slave structure. The
advantages of this algorithm compared to the others are that it
allows having two separate schedulers. Slave schedulers
perform local scheduling depending on the current
temperature of the core and it's RH factor. The master
scheduler performs global scheduling based on the
information from the whole stack of cores. This solution
allows taking into consideration the effect that, when one of
the cores becomes hot, the thermal energy can quickly be
forwarded to the other cores making them hot too. The next
advantage of such an approach is that it has a modular
structure and it allows, in case of a need, to change the
structure of schedulers with minimal impact on the other
scheduler and the entire design. The disadvantage of such a
method is that it uses more resources compared to the other
algorithms and may be slower for real time systems.

REFERENCES

[1] W. Topol, D. C. La, Tulipe Jr., L. Shi, D.J. Frank, K. Bernstein, S.E.
Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini, M. Leong,
“Three-dimensional integrated circuits”, IBM J. Research and
Development, vol. 50, no. 4/5, pp. 491-506, 2006.

[2] E. Kursun, C.-Y. Cher, A. Buyuktosunoglu, P. Bose, “Investigating the
effects of task scheduling on thermal behavior”, the 3rd Workshop on
Temperature-Aware Computer Systems, Held in conjunction with
ISCA-33, 2006.

[3] M. Awasthi, R. Balasubramonian, “Exploring the Design Space for
3D Clustered Architectures”, 3rd IBM Watson Conference on
Interaction between Architecture, Circuits, and Compilers (P=ac2),
Yorktown Heights, October 2006.

[4] C. Sun, L. Shang, R.P. Dick, “Three-dimensional multiprocessor
system-on-chip thermal optimization,” Proc. International Conference
Hardware/Software Codesign and System Synthesis, pp. 117-122, 2007.

[5] J. Yang, X Zhou, M. Chrobak, Y. Zhang, L. Jin, “Dynamic Thermal
Management through Task Scheduling,” IEEE International Symposium
on Performance Analysis of Systems and software , ISPASS’08,
pp.191-201, 2008.

[6] P. Brucker, Scheduling Algorithms, Fifth Edition, Springer Press, 2007.
[7] C. Zhu, Z. Gu, L. Shang, R.P. Dick, R. Joseph, “Three-dimensional

chip-multiprocessor run-time thermal management”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, V.27,
no.8, pp. 1479-1492, 2008

[8] J. Choi, “Thermal-aware Task Scheduling at the System Software
Level, ” ISLPED’07, August 27-29, Portland, pp. 213-218, 2007.

